3.239 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=134 \[ \frac {2 \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac {5 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

2*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d-5/4*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*
x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2765, 2982, 2782, 205, 2774, 216} \[ \frac {2 \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac {5 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(2*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) - (5*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sq
rt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])
/(2*d*(a + a*Cos[c + d*x])^(3/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {\int \frac {\frac {a}{2}-2 a \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{a^2}-\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {5 \operatorname {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 d}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^2 d}\\ &=\frac {2 \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{3/2} d}-\frac {5 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.79, size = 215, normalized size = 1.60 \[ \frac {\cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {\sqrt {\cos (c+d x)} \tan \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {1}{2} (c+d x)\right )}{d}-\frac {i e^{\frac {1}{2} i (c+d x)} \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (4 \sinh ^{-1}\left (e^{i (c+d x)}\right )+5 \sqrt {2} \tanh ^{-1}\left (\frac {1-e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )-4 \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right )}{\sqrt {2} d \sqrt {1+e^{2 i (c+d x)}}}\right )}{(a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(Cos[(c + d*x)/2]^3*(((-I)*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(4*ArcSinh[E^(I
*(c + d*x))] + 5*Sqrt[2]*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] - 4*ArcTanh[Sq
rt[1 + E^((2*I)*(c + d*x))]]))/(Sqrt[2]*d*Sqrt[1 + E^((2*I)*(c + d*x))]) - (Sqrt[Cos[c + d*x]]*Sec[(c + d*x)/2
]*Tan[(c + d*x)/2])/d))/(a*(1 + Cos[c + d*x]))^(3/2)

________________________________________________________________________________________

fricas [A]  time = 1.83, size = 182, normalized size = 1.36 \[ \frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 8 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(
d*x + c))/(sqrt(a)*sin(d*x + c))) - 8*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(a*cos(d*x + c)
 + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))
/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.17, size = 195, normalized size = 1.46 \[ \frac {\left (\cos ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (4 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right ) \sqrt {2}\, \sin \left (d x +c \right )+\cos \left (d x +c \right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+5 \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )-\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {2}}{4 d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{5} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x)

[Out]

1/4/d*cos(d*x+c)^(3/2)*(-1+cos(d*x+c))^2*(a*(1+cos(d*x+c)))^(1/2)*(4*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)/cos(d*x+c))*2^(1/2)*sin(d*x+c)+cos(d*x+c)*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+5*arcsin((-1+co
s(d*x+c))/sin(d*x+c))*sin(d*x+c)-2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/
sin(d*x+c)^5*2^(1/2)/a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)/(a + a*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^(3/2)/(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)**(3/2)/(a*(cos(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________